
JOURNAL OF APPLIED ELECTROCHEMISTRY 25 (1995) 755-763 

An efficient method for solving the model equations of a 
two dimensional packed bed electrode 
Y. P. SUN,  W. L. X U  

Chemical Engineering Department, Taiyuan University of Technology, Shanxi 030024, China 

K. SCOTT 

Department of Chemical and Process Engineering, University of Newcastle upon Tyne, NE1 7RU, 
Great Britain 

Received 20 May 1992; revised 10 February 1993 

A theoretical and experimental study of  a flow-by packed bed electrochemical reactor consisting of  
graphite particles is given. The mathematical  model  describes the two dimensional distributions of  
electrode potential and reactant concentration in the reactor, and includes the influence of  lateral 
dispersion between the feeder electrode and membrane.  A new efficient numerical method,  based 
on central finite difference and orthogonal  collocation is used to solve the model. Results of  the model  
simulations agree well with experimental measurement  of  the potential distribution for the ferro- 
cyanide/ferricyanide system. 

List of symbols 

Ci 

Cio 
C 
C s 

Cs 

D e  

Da 
F 

i 
io 
I 

J 
ka 
n 
N 
N2 

Pe 
R 

specific surface area of packed bed electrode, Shm 
(cm -1) T 
concentration of species i (i = 2 for cathodic Ua 
species) (moldm 3) x 
inlet concentration of species i (mol dm -3) x 0 
dimensionless concentration X 
concentration on the electrode surface y 
(mol dm -3) Y0 
dimensionless concentration on the electrode Y 
surface z 0 
effective diffusion coefficient (cm 2 s -1) 
Damk6hler number 
Faraday's constant (96 487 C mol 1 of a 
electrons) a a 

current density (A m -2) ct c 
exchange current density (A m -z) 7] 
number of equation u 
electrochemical reaction rate per unit area 
(mol cm 2 s l) 02 
number of node point 
average local mass transfer coefficient (cm s -I) ~ba 
number of moles of electrons ~b2 
number of inner collocation points (fieq 
flux of species 2 (molcm 2 s-l) ~D 

Peclet number 
gas constant (8.314Jmol -1 K =1) 
modified Sherwood number 
temperature (K) 
average axial velocity (cm s -1) 
lateral coordinate (cm) 
electrode depth (cm) 
dimensionless depth of electrode 
axial coordinate (cm) 
electrode length (cm) 
dimensionless length of electrode 
electrode width (cm) 

Greek symbols 
aspect ratio 
anodic transfer coefficient 
cathodic transfer coefficient 
overpotentiat (V) 
stoichiometric coefficient 
dimensionless rate constant 
effective conductivity of electrolyte 
([2 -1 cm -1) 
potential of electrode (V) 
potential of electrolyte (V) 
equilibrium potential (V) 
dimensionless potential 

1. Introduction 

The area of porous and particulate bed electrodes has 
been extensively studied with a range of mathematical 
models developed in attempts to predict the 
behaviour. Early studies sought analytical solutions 
of the one dimensional potential distribution model 

in porous electrodes with activation controlled 
kinetics [1-3]. 

Numerous other publications appeared in this area 
in the late 1960s and 1970s covering electrochemical 
rate equation governed by either kinetics, mass trans- 
port and mixed kinetic and mass transport control 
and as a result of which several reviews appeared 
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Fig. 1. Schematic diagram of the packed bed electrochemical 
reactor. 

[4-8]. Most of this work considered porous flow 
through electrode systems for which a one 
dimensional model is appropriate. The flow by con- 
figuration, which is of greater practical significance 
(in which electrolyte flow and current flow are 
perpendicular), however, requires a two dimensional 
model which was analysed less extensively [9-1t]. 
For reaction systems influenced by kinetics and mass 
transport the numerical solution of the defining 
equation of porous or particulate electrodes can be 
particularly demanding. 

In electrochemical engineering the mathematical 

model equations, which describe the concentration 
and potential distributions in an electrochemical 
reactor, are usually parabolic and elliptical equations 
with mixed boundary conditions, respectivley. The set 
of nonlinear partial differential equations (PDEs) 
generally cannot be solved by analytical solutions 
and thus require numerical methods. 

The central finite difference method [12] and the 
orthogonal collocation method [13] are two direct 
ways of solving the problem, and have been widely 
applied in chemical engineering modelling. The cen- 
tral finite difference method has a high accuracy in a 
general case, and can obtain a stable convergence 
solution. However, its CPU time to reach a proper 
convergence criterion is rather long for solving the 
boundary problem involved with a nonlinear 
elliptical equation in an electrochemical engineering 
model. On the contrary, the orthogonal collocation 
method has advantages of a shorter CPU time and 
less prior treatment before run time on a computer, 
but cannot achieve a stable convergence solution 
with ease. For these reasons, a numerical method hav- 
ing the advantages of these two methods is developed 
in the present work. It provides an efficient way to 
solve a mathematical model of a two dimen- 
sional packed bed electrode reactor. The model is 
used to predict two dimensional electrode potential 
and concentration distributions and experimental 
measurements of potential distribution generally 
agree with prediction. 

2. Mathemat ica l  model  o f  a packed bed electrode 
reactor 

A general packed bed electrode reactor with a 
rectangle geometry is discussed. The schematic dia- 
gram is shown in Fig. 1. The assumptions used in 
the development of the model are: 

(i) Dilute solution theory is applied since a packed bed 
electrode reactor is suitable for the treatment of a low 
concentration of reacting ions. Sufficient supporting 
electrolyte is present, so that ionic migration of react- 
ing species is neglected. 
(ii) The electrolyte and electrode are both treated as 
continuous phases. 
(iii) Isothermal conditions exist. 
(iv) The porosity and specific area of the electrode are 
uniform, and do not change with time. 
(v) Dispersion is absent in the axial direction. 
(vi) The concentration of the anodic reactant is large 
relative to the concentration of the cathodic reactant. 
(vii) The electrochemical kinetic expression follows a 
Butler-Volmer type relationship. 

A Poisson equation can be used to describe the 
potential distribution within the electrolyte phase in 
the packed bed. The potential ~bl(x,y) at any point of 
the electrode is uniform because the effective conduc- 
tivity of the electrode phase is high. 
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The distribution of the potential of the electrolyte 
phase ~bZ(x,y ) can be expressed by Ohm's law as 

V2q~2 = - -Vi2/0-  2 (1) 

where 0- 2 is the effective conductivity of the electrolyte. 
/2 is the current density in the electrolyte. According to 
the model assumptions, the expression of i2(x,y) is 

• C 1 (x,y) n F  
j2(x,y) = to{ c,0 exp[c~a(~--~)rl 1 

nF  
-- ¢2(x'Y----~)expf--°Lc(-~)~J}c20 (2) 

where % is the exchange current density, aa and ac are 
transfer coefficients and the subscripts '0' on the con- 
centrations C1 and C2 refer to inlet conditions• 

With the assumption (vi), the change in concentra- 
tion of the anodic reactant is negligible ie Cl(x,y) = qo 
then Equation 2 can be simplified: 

• nF 
J2(x,y) = l0 ( exp [°Za (~ -~)  r]] 

C ~ y ) e x p ( - a e ( ~ T ) ~ l ] }  (3) 

The expression for overpotential r/is written as 

T/ = q51 -- q52(x,y ) -- qSeq (4) 

where ~eq refers to the equilibrium potential, namely 
the open circuit potential calculated with these values 
of inlet concentrations. 

The equation for the conservation of charge is 

V "J2 = --aj2 (5) 

where aj2 is the local current per unit volume of the 
electrode. 

Substitution of Equation 5 into Equation 1 yields 
the following equation describing the potential distri- 
bution of the electrolyte phase: 

V2~2 = --aj2/0- 2 (6) 
and Equation 6 can be rewritten as 

V2~ =- aj2/ 0- 2 (7) 

A steady state material balance for the cathodic spe- 
cies 2 in an element of the packed bed electrode of 
volume, dx dy z0, is 

- V N  2 q- aj2 = 0 (8) 

For a two dimensional system with a linear velocity in 
the y-direction only and in the absence of axial disper- 
sion Equation 8 can be simplified to 

2 
De OC2(x'Y) OC2(x 'Y)  vaj2(x'Y) (9) 

Ox 2 Ua Oy - nF  

where c2 is the local reactant concentration, and Ua is 
the superficial electrolyte velocity• The lateral dis- 
persion is characterised by an effective diffusion 

coefficient D e . 
Under steady state conditions, the local reaction 

rate is equal to the local mass transfer rate, expressed 
as 

vaj2(x'Y) -- kaa(C2 - C2s ) (10) 
nF  

where k a is the mass transfer coefficient• Different 
expressions of ka should be used for different ranges 
of Reynolds number Re [14]• 

An appropriate set of boundary conditions is as 
follows: 

reactor inlet 

y = O ,  O<~x<.NXo, 

reactor exit 

Y=Y0, O <~ x <~ xo, 

membrane 

J x = O, O<~ y<~ yo, 

feeder 

x = x0, 0~<y~<y0, 

C2 = C20, O~)2/Oy = 0 (11) 

Oc2/Oy = o, 0 ¢ 2 / 0 y  = o 

(12) 

O C 2 / O X  = 0, q~2 = cons tant  

(13) 

OC2/OX = O, O02/Oy -~- 0 

(14) 

Equations 7, 9 and 10 can be simplified by defining the 
following dimensionless variables: 

X = X/Xo, Y =- Y/Yo, C =- £2/Cio, • = n F ~ / R T  

(15) 

Dimensionless equations for Equations 7, 9 and 10 are 
as follows: 

2 
ox--- + = - c s  ( 1 6 )  

02c 
P e a ~ y  = Shm(C - Cs) (17) 

OX 2 

Da[exp(aa~) - Cs exp(-ac~)} = (C - Cs) (18) 

with corresponding boundary conditions: 

0~ 
r = o ,  o~<x~<l, C = l ,  6--Y (19) 

OC O~ 
Y = l ,  0~<X~<l, 6---Y=0' ~ = 0  (20) 

OC 
x = 0 ,  0~<Y~<l, ~-~=0,  ~ = c o n s t a n t  (21) 

6C 60 
x = l ,  0~<y~<l, 6 - - - ~ = 0 , - - = 0  (22) 

6X 

The boundary condition at the membrane, X = 0, is 
selected to conform with the experimental imposed 
condition of operation• This condition is consistent 
with the work of Alkire and Ng [9] on two dimen- 
sional potential distributions in packed bed electro- 
des. Experimental measured potential confirm that 
this is an accurate representation of the boundary. 
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The Butler-Volmer kinetic Equation 16 was selected 
on the basis of conforming with the model assump- 
tions. There are five dimensionless groups in the 
model equations: 

aspect ratio 
x0 

oe = - -  (23) 
Y0 

dimensionless rate constant 

ionFax~ 
- - -  (24) 

cr2RT 

Peclet number 

Pe - UaX° (25) 
De 

modified Sherwood number 

kaax2o 
Sh  m = (26)  

De 

Damk6hler number 

iou 
Da - - -  (27) 

n Fka c o 

Equation 16 describing the potential distribution in 
the packed bed, is an elliptical one, while Equation 17, 
describing the concentration distribution, is a para- 
bolic one. Both of these satisfy the mixed boundary 
conditions and involve the nonlinear terms, 
exp(c~,q~), exp(%~) associated with the electrode 
potential. 

The significance of the dimensionless parameters 
has been discussed in previous publications [9, 10]. 
contains the ratio io/a2 and indicates the relative 
importance of electrolyte resistance and charge- 
transfer resistance. In the absence of mass transport 
limitations ~ is the parameter that controls electrode 
behaviour and can be regarded as a linear polariza- 
tion parameter. When ~ < 1, the conductivity is 
sufficiently high so that the secondary current distri- 
bution is uniform. Pe determines the relative impor- 
tance of convective transport to diffusive transport 
of reactants. If  Pe is large, the current distribution 
along the axial direction will be uniform since the sup- 
ply of reactions will insure against depletion. For 
lower values of Pe, axial distributions will be non- 
uniform due to depletion of reactant. 

In the operation of packed bed electrodes there are 
two limiting situations which may arise in practice 
associated with either a complete mass transport con- 
trol of the reaction or complete kinetic control of the 
reaction. In both cases analytical solutions can be 
obtained which enables the accuracy of the numerical 
solution to be determined. 

In the system an important dimensionless group is 
the Damkthler  number Da which is a measure of 
the ratio of the kinetic rate to the mass transfer rate. 
An increase in the values of Da (and ~), causes the 
concentration difference ( c -  cs) between the local 
electrolyte and electrode surface to become large, 
namely c s will be close to zero. In this case, the 
reaction process in the packed bed will be increas- 
ingly controlled by mass transfer and then the model 

can be simplified as 

dC 
Pe oc ~ = - S h m C  (28) 

02~ 02(I) ~-- C (29) 
O X  ~ -t- OZ 2 - ~  - -  Da 

where no nonlinear terms exist, so an analytical 
solution can be obtained by using Fourier transforma- 
tion [16]. At the other extreme on decreasing the 
values of Da and ~, the concentration difference 
(c - Cs) will be close to zero (ie c = Cs). In this case, 
the reaction process in the packed bed is controlled 
by the electrode kinetic reaction rate, and the model 
can be simplified to the dimensionless form 

d 2 ~  
dX 2 - ~[exp(aa~) - Cexp(-ac~)]  (30) 

This latter case is applicable to a reactor with a low 
conversion per pass, and has been previously 
analysed by several authors [17, 18]. 

3. Numerical method for solving the model equations 

The set of PDEs, Equations 16 and 17, is first con- 
verted into a set of ODEs by orthogonal collocation 
[13]. According to the principle of the orthogonal 
collocation method, values of first order and second 
order derivatives can be evaluated in terms of  linear 
combination of values of trial functions by using 
collocation matrices, Ao and Bo, at collocation 
points. The ordinary differential equations obtained 
from Equations 16 and 17, are therefore accordingly 
written: 

d2~(i) N+2 
dx~-T-- + 2 Z Bc(I ,K)  

K=I 

xq~(K) = Daa [C(I) - Cs(I)] (31) 

d2C(i) N+2 
dX 2 Peee Z Ac (I, K) 

K=I 

x~(K)  = Shm[C(I) - Cs(I)] (32) 

where I refers to the number of the equation, of which 
there are N + 2 including two boundary conditions, N 
is the number of inner collocation points; K is the 
number of collocation points, K = 1 ,2 , . . .  N + 2. 

Villadsen [13] presents the computer programs 
which can be used to evaluate zeros (as collocation 
points) of orthogonal polynomial and collocation 
matrices Ac, Be. If  values of Ac and B c are known, X 
will be considered the only independent variable in 
the ODEs. 

Further discretization of derivatives in Equations 
31 and 32 can be done by using the central finite dif- 
ference method. This is now described below treating 
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I Guess values of O(K,J). C(K,J) [ 
,& 

I selecting the orthogonal collocation points ] 
+ 

[ calculating the collocation matrix [ 

[ ' converting PDEs into ODEs I 

discretizing ODEs by central finite .difference ] 

I solving the algebraic equations by BAND(J) 
+ 

] evaluating of (I) (K,J) and C (K,J) ] ~ n c  ,4,, 
I abs(~m+ _d~,,) <~;? 

abs(C m +1- C,,) < ~:? 

~ 0 ~  yes 

Fig. 2. Flowchart for the numerical solution of the two dimensional 
model. 

Equation 31 as an example: 

d2ff~(I) 
dX ~ - [~(I,j + 1) + ~(I,j - 1) - 2~(I,j)]/(AX) 2 

(33) 

where j refers to the mesh point number. 
Newman [12] outlines the procedure for expressing 

any ordinary differential equation into finite dif- 
ference form. Substitution of Equation 33 into 
Equation 31, therefore, yields the following algebraic 
equation: 

N+2 N+2 
Z A( I ,K ) ~ ( K ,J -  1) + Z B(I,K)~(K,J) 
K=I K=I 

N+2 
+ Z D ( I , K ) ~ ( K , J +  1) - G(I) = 0 (34) 

K=I 

For a nonlinear equation, coefficient A, B, C, D and G 
will be functions not only of the independent variable 
of X, but also of the dependent variables of ~(K). It is 
necessary to put the nonlinear equation in linear form 
and iterate over the nonlinearities. The function 
defined by Equation 34 is called F(I). If one estimates 
a set of ~(K, J) as a trial solution, F(I) can be repre- 
sented by a Taylor series keeping only the first order 
terms: 

N+2 
F(I) = F(I) ° + X-" X-" ( O F ( I )  "9 

~ ~06o(K M'V K=I M=J-1,J,J+I ~ * ' ~  *'*/ 

x [~(K, M) - if(K, M) °] (35) 

The coefficients values in Equations 34 will be as 
follows: 

( OF(I) 
A(I,K) = "O~(K,J- 1))O (36) 

(OF(I)  .~ (37) 
B(I,K) = "O+(K,J)" 

Table 1. System properties 

n 1 
cr(f~ cm) -1 0.108 
# (gcm -1 s -1) 9.9 × 10 -3 
p (g cm -3) 1.0445 
dp (m) 4 x 10 -3 
io (A cm -2) 10 -2 

( OF(I) 
D(I, K) = "O~(K, J + 1) )o (38) 

U+2 OF~D 

Newman's subroutine BAND(J) [12] works by giving 
the numerical values of A, B, C, D, and G for each 
value of J, and by inverting any set of tridiagonal 
matrixes. Although the technique for using 
BAND(J) appears simple once the Newman's 
concept is fully grasped, use of Bennion's subroutine 
DIFEQ [19] is suggested; this can handle all the lin- 
earization and details associated with calling 
BAND(J). 

The mass balance Equation 17 and the boundary 
condition equations can be treated in similar ways. 
The total number of equations is (N + 2)* 2. Since 
there are two dependent variables ~ and C. The 
numerical procedure is as shown in Fig. 2. 

In this program, the guessed values of ~(K, J) and 
C(K, J) are given first and then the collocation points 
and the collocation matrixes Ao, Bc are calculated by 
Villadsen's subroutines [13]. Hence, the PDEs are 
converted into ODEs with respect only to X. The 
nonlinear ODEs are discretized and linearized by 
Bennion's DIFEQ [11]. Finally, a set of algebraic 
equations are solved by Newman's BAND(J) [12]. 

For solving the model equation, typically four inner 
collocation points were used in the Y direction, and 21 
node points used in the X direction. The convergence 
criteria was 1.0 x 10 -5. Typical execution times were 
20 s per case on an AST 386 computer. 

In this program, the trial values of 62(K,J) and 
C(K,J) are selected first and then the collocation 
points and the collocation matrix are calculated by 
the orthogonal collocation method. Therefore, the 
PDEs are converted into ODEs with respect to posi- 
tion X. The nonlinear ODEs are discretized and lin- 
earized by the central finite difference method. 
Finally, a set of algebraic equations are solved by 
Newman's BAND(J) [1]. 

For solving the model equation, four inner colloca- 
tion points were used in the Y direction, and 21 node 
points used in the X direction. The convergence 
criteria was 1.0 × 10 -5 with eight iterations on an 
AST 386 computer. 

4. Results and discussion 

A mathematical model of a packed bed electrode 
reactor for the system [Fe(CN)6]-3/[Fe(CN)6] -4 was 
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Fig. 3. Distribution of  dimensionless electrode potential, • in the 
lateral and axial direction. ~ = 0 . 1 4 ×  105, P e = 0 . 6 2 5  × 106, 
Shin = 0.218 × 107, Da = 199, - ~  = 0.6. Curves show axial posi- 
tion varying from Y = 0 to 1.0 in increments of  0.1. 

calculated by the numerical method presented in this 
paper. The packed bed electrode has a size of 
x0 = 0.03m, Y0 = 0.15m, z0 = 0.06m, and the elec- 
trode material was graphite particles, 4.0mm in 
diameter. Sodium hydroxide solution was used as a 
supporting electrolyte. The concentration of 
K4Fe(CN)6 was 100 times higher than that of the 
K3Fe(CN)6. The potentials of the electrolyte were 
measured by eight probes equally positioned along 
the electrode, to obtain the potential values in t h e y  
direction simultaneously [15]. The probes could be 
moved in the X direction and were connected to a 
data acquisition system. The values of input para- 
meters for this system are summarized in Table 1. 

The selected operating potential of the packed bed 
will largely determine the distribution of electrode 
potential and concentration in its structure. At low 
applied potentials the reaction will primarily be 

C 

0.8  1 

0 .6  

0 . 4 -  

0 , 2 -  

0 .0  I I ~ I 
0.0  0 .2  0 .4  0 .6  0 .8  1.0 

X 

Fig. 4. Distribution of  dimensionless concentration C on the packed 
bed electrochemical reactor. Conditions as in Fig. 3. 
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Fig. 5. The effect o f  dispersion on the distribution of  dimensionless 
concentration and dimensionless potential on the packed bed elec- 
trochemical reactor. Values of  X on figure. ( ): Pe = 100, 
Shm = 349, ( = 140; (- - -): Pe = 6.25 x 105, Shin = 2.18 x 106, 
( = 0.14 x l0 s. 

under kinetic control and thus mass transport will 
only have a small effect on the system as there will 
not be a large distribution in concentration, due to 
relatively low conversions achieved. 

Figure 3, shows typical potential distributions 
obtained from the model of the packed bed electrode 
at a low applied potential. The distributions show that 
the electrochemical activity is confined to regions clo- 
ser to the membrane, as expected. The distribution of 
potential obtained at the axial position Y = 0 is in 
agreement with that predicted by the analytical 
solution of the model [18] defined in terms of 
Equation;' 30, the one dimensional approximation. 
The distribution of potential is more uniform as the 
downstream position of the reactor is approached 
Y ~ 1. An effect of these distributions in potentiaI 
is that the depletion of reactant is greater as X -+ 0 
and Y ~ 1, which is illustrated in the concentration 
distributions shown in Fig. 4. 
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Fig. 6. The distribution of  dimensionless potential ~5 on the lateral 
direction at medium and high applied potentials. (a) @ = 3.0 V (b) 

= 6.0V. Other conditions are as in Fig. 3. Values o f  Y vary 
from 0 to 1.0 in increments of  0.1. 

The distributions of Figs 3 and 4 are obtained for a 
low value of effective diffusivity, of a value equivalent 
to the ionic diffusivity. The actual value of effective 
diffusivity is difficult to estimate in packed beds and 
previous work [9, 10] with packed bed electro- 
chemical reactors has tended to ignore the influence 
of dispersion on effective diffusivity. Estimations of 
dispersions coefficients from correlations obtained 
for packed bed reactors put the value of Peclet 
number at approximately 100. Figure 5 shows 
the influence of an increase in effective diffusion 
coefficient (lower Pe) on the distributions of con- 
centration and electrode potential. The effect of 
dispersion is to increase the movement of reactant in 
the lateral direction to offset any depletion in reac- 
tant, resulting in a higher concentration of reactant 
compared to that with low dispersion, especially in 
this system at regions near the membrane. 

The effect of increasing the applied potential on the 
potential distribution can be seen by comparing Fig. 3 
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0 . 6 -  

0 . 4 -  

0 . 2 -  

0 . 0  
0 . 0  
(a) 

.0 

• [ I - I  
0 .2 0 .4  0 .6  0.8 

Y 

.0 

1 . 0 -  

0 .9  

0 . 8 -  

0.2  - 0 .3  

" ,  0.1 
~ ~ - ~ "  - - ~.Z~,z=-,- 0 

0 .0  
0 .0  0.2 0 .4  0.6 0 .8  .0 

(b) 

Fig. 7. Distribution of  dimensionless concentration C in the packed 
bed electrochemical reactor at high applied potential. (a) ~I, = 6.0 V, 
Pe = 1.25 x 105, Shin = 8.86 x 105, Da = 49.1. Values of  position 
Xmarked  on figure (in increments of  0.1). (b) • = 3.0 V, (- - -): para- 
meter values as in (a); ( ): Pe = 100, Shm = 524, Da = 33.3. 

and Fig. 6. The higher the applied potential the more 
uniform the electrode potential becomes, with a 
greater proportion of the electrode becoming more 
active. At an applied potential of 6 V, it is seen that 
at the downstream position of the reactor (Y ~ l) 
the electrode potential is quite uniform over the bed 
thickness. A factor which contributes to this unifor- 
mity in potential distribution is the depletion of 
reactant in the downstream positions of the reactor; 
as evidenced by the typical concentration distribution 
depicted in Fig. 7. 

A notable feature of the concentration distribution 
is that at regions close to the membrane a maximum in 
the concentration occurs approximately half way 
along the axial position Y. This occurs when the 
concentration falls to close to zero and then lateral 
dispersion increases, causing a replenishment in con- 
centration further downstream. As the concentration 
increases the depletion by reaction, which is in a 
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Fig. 8. Experimental potential distribution in the packed bed elec- 
trochemical reactor. Ua = 5 x 10 -3 ms -1, ~ = 4.0V, ~ = 1.4× 
104. Model ( - - ) :  Pe =300; (---): Pe = 1.25 x 105. (a) Axial 
potential distribution, (b) lateral potential distributions. (O) Experi- 
mental data. 

mass transport limiting range, increases causing the 
concentration to fall again further downstream in 
the Y direction. 

Also shown in Fig. 7(b) are the concentration distri- 
bution at a lower applied potential (3 V) in which the 
reaction rate is a mixed kinetic and mass transfer 
effect. In this case the lateral dispersion is more 
significant than the reaction rate (cf. ~ = 6.0 V) and 
thus the occurrence of  the maxima is more pro- 
nounced near the membrane. A change in the 
dispersion rate has only a relatively small effect on 
the concentration distribution, as it affects the values 
of  both the Peclet number and Sherwood number. 

4.1. Experimental  potential distributions 

Figure 8 shows experimentally measured potential 
distributions for the packed bed at an applied 
potential of  4.0V. The data conform to the 
theoretical behaviour with the bed being more electro- 
active at the membrane and the distribution of 

0.0 0.2 0.4 0.6 0,8 1.0 
X 

Fig. 9. Experimental potential distributions in the packed bed reac- 
tor. U~ = 10-3ms -1, • = 6.0V, ( = 1.4 × 10 4. Model ( ): 
Pe = 100; (- - -): Pe = 1.25 × 105. 

potential being more uniform near the exit of  the 
reactor. The theoretical distributions in potential are 
not particularly sensitive to the value of  the Peclet 
number at this value of  applied potential as shown 
in Fig. 8. 

Figure 9 shows experimental potential distributions 
for the packed bed at a higher applied potential of  
6.0V. The data are in general agreement with 
simulation although it is less satisfactory at higher 
values of lateral position X and axial position Y. 
Figure 9 also shows that there is a small influence of  
dispersion on the potential distribution, with lower 
Peclet numbers (higher effective diffusion coeffÉcient) 
tending to make the potential distribution more 
uniform. 

The experimental data and model distributions 
show a better agreement at low Peelet number where 
dispersion is more significant, and which is likely to 
more faithfully represent experimental behaviour. 

5. Conclusion 

This work has demonstrated the usefulness of an 
improved numerical method for the solution of  a 
mathematical model for a two dimensional packed 
bed reactor. The experimental model reaction system 
is shown to generally substantiate the validity of the 
mathematical model. This is a general model in that 
it is applicable to mixed kinetic and mass transport 
control and is not limited by assumptions of  complete 
mass transport or kinetic rate control. This is an 
important factor for packed bed type reactors which 
are being increasingly used in wastewater and efflu- 
ent treatment applications. The operation below a 
mass transport controlled condition is ideally 
required to achieve overall good efficiencies at high 
conversion, to minimise energy consumption and to 
reduce operational difficulties associated with second- 
ary processes. 
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